REACTIVITY **OF RCu,BF3 AND R2CuLi,BF3 TOWARDS ALLYLIC ACETALS AND ETHERS**

A. Ghribi, A. Alexakis*, J.F. Normant Laboratoire de Chimie des Organo-Elements Tour 44, 4 place Jussieu 75230 PARIS Cedex 05 France

Summary : Organocopper and cuprate reagents associated with Lewis acids, are hiahlv reactive towards allvlic acetals and ethers. Displacements of-th'e alkoxy group occurs by SNB' attack according to the various parameters of the reaction.

The reactivity of x -ethylenic acetals with organometallic reagents was explored some years ago¹⁻⁵ and recently reinvestigated again^b. These last **developments prompt us to report our recent results in this field.**

Aside deprotonation, such acetals may afford two products, by a direct displacement of an alkoxy group (pathway a) or by an SN₂' displacement **(pathway b) ** \

Pathway a is selectively followed by titanium tetrachloride catalyzed **3 aliphatic Grignard reagents, whereas pathway b is exclusively prefered by organolithium reagents 296 and copper catalyzed Grignard reagents 435** . **Our finding that acetals are rapidly cleaved by organocopper and cuprate reagents associated with strong Lewis acids(see preceding letter),prompted** us to examine the case of x-ethylenic acetals. A systematic study of the **various parameters** :

- **organocopper or organocuprate reagent**

- **nature of the main metal (Mg or Li)**
- choice of solvent (Et₂0 or THF)

shows that all of these reagents are highly reactive towards acetals (lo-30min at -35°C). In most cases both SN₂ and SN₂' attacks (pathway a and b) are observed.Moreover the SN₂/SN₂' ratio is the same from the begining up **to the end of the reaction,indicating that this ratio depends exclusively on the intrinsic nature of the organometallic reagent, of the acetal and of the solvent. The reaction temperature as well as the nature of the counterion(reagents prepared either from RMgX or RLi) do not modify**

significantly this ratio. Pathway \underline{b} (SN₂') is exclusively followed, **only in the case of the unhindered acrolein diethyl acetal, and** only **with** RCu, BF₃ in Et₂0 (entry 1 and 4). In THF solvent or with cuprate reagents R₂CuM, BF₃ (M=Li or MgX) a mixture of both SN₂ and SN₂' is obtained. Pure **SN2 attack cannot be attained. Interestingly the E/Z ratio of the obtained enol ether is completely reversed as compared with BuLi alone (entry 3).**

Crotonaldehyde diethyl acetal shows the dramatic influence of a substituent in 1(position. This time, pure SN ' **²attack cannot be attained with any** reagent (except BuLi alone, entry 9). On the other hand RCu, BF₃ in THF (entry 6) reacts exclusively by pathway **a** (SN₂ attack). Copper catalyzed Grignard reagents react sluggishly but cleanly by pathway **b** with this acetal⁴. Thus, the highly increased reactivity of these organo copper, BF₃ **complexes is obtained at the expense of their selectivity.**

Cinnamaldehyde diethyl acetal reacts in a strikingly different manner with RCu,BF₃ than with organolithium^{4,0} or Grignard reagents ^{1,4} (with or withou **copper catalysis). With the organolithium reagents only addition to the double bond is observed (entry 13), whereas with the former reagent,pure** SN₂ attack occurs (entry 12).

Finally a last example is offered by cyclohexenone ethylene glycol ketal. Organolithium reagents react by proton abstraction in the dioxolan ring6, and copper catalyzed Grignard reagents react only by pathway **b** $(SN_2')^5$. The same pathway is exclusively followed by R₂CuLi,BF₃ in Et₂0.Moreover, the increased reactivity of such cuprates allows the reaction of Me₂CuLi **introducing the methyl group which could not be transferred previously ⁴⁹⁵** .

An alternative to acetals can be found in certain cases with acylates. These compounds are easily prepared from the corresponding aldehyde 7,P (and an acid anhydride). Although it has been reported that they react with R₂CuLi to afford a mixture of various products, we found that BuCu, LiX, BF₃ is an efficient reagent for a clean SN₂' attack.

 \leftarrow $\frac{0AC}{0AC}$ + BuCu,LiX,BF₃ $\frac{Et_2O}{-10°1h30 + 25°}$ Bu, \leftarrow $\frac{6.04C}{10%1h30 + 25°}$ **Bu OAc -10' lh30 t25"**

The same reaction may also be performed in a simpler manner with BuCu, MgX₂ **in THF without BF3 (-15°,10min) (83X, E/Z:45/55).**

Crotonaldehyde acylate reacts also by pathway \underline{b}^{10} :

 \leftarrow ^{OAC} + BuCu,MgX₂ THF Bu \leftarrow BU \leftarrow BO% (E/Z:45/55)

Reactions of $R''Cu''$, BF_{3} with various α -ethylenic acetals and ketals (-35°, 1h)

a. Ratio determined by G.C. and by ¹H NMR
b. Yield of isolated products, by distillation.
c. BuCu,MgX₂,BF₃ and Bu₂CuMgCl,BF₃ behave similarly
d. Analogous results were obtained in Et₂O (ref.2) and in hexane (re

Lastly, preliminary studies shows that allylic ethers are able to react, contrary to a previous report dealing only with cinnamyl substrates⁹.

As was the case for acetals, RCu, BF₃ shows a preference for SN_{2} ['] attack, whereas R_2 CuLi, BF₃ prefers pathway <u>a</u> (SN₂).

It appears that organocopper and cuprate reagents associated with Lewis acids are of increased reactivity towards allylic ethers, acetals and acylates. A better control of their regioselectivity may be attained by variing the Lewis acid and these studies are presently under way.

Aknowledgements: We thank the C.N.R.S. for financial support (ERA 825)

References :

- 1. R. Quelet, J. D'Angelo : Bull. Soc. Chim. France 1503 (1967)
- 2. R. Quelet, C. Broquet, J. D'Angelo : Compt. Rend. Acad. Sci. 264C 1316 (1967)
- 3. T. Mukaiyama, H. Ishikawa : Chem. Lett. 1077 (1974)
- 4. J.F. Normant, A. Commerçon, M. Bourgain, J. Villieras : Tetrahedron Lett. 3833 (1975)
- 5. Y. Gendreau, J.F. Normant : Bull. Soc. Chim. France II 305 (1979)
- 6. C. Mioskowski, S. Manna, J.R. Falk : Tetrahedron Lett. 25 519 (1984)

7. a/ E. Knoevenagel Liebigs Ann. 402, 127 (1914)

- b/ Houben Weyl "Methoden der Organische Chemie" Georg Thieme Verlag 8 555 (1952)
- 8. K.S. Kochhar, B.S. Bal, R.P. Deshpande, S.N. Rajadhyaksha, H.W. Pinnick J. Org. Chem. 48 1765 (1983)
- 9. Y. Yamamoto, S. Yamamoto, H. Yatagai, K. Maruyama, J. Amer. Chem. Soc. 102, 2318 (1980)
- 10. We also found that RMgX, 2 HMPT gives a clean SN₂ type product :

$$
nBUMgBr + \bigvee_{OAC} \underbrace{ORc}_{2 \text{ eq. HMPT}} \underbrace{TRF}_{+25^\circ, 60 \text{min}} \searrow \bigvee_{Bu} \underbrace{ORc}_{79\%}
$$

(Received in France 5 April 1984)