REACTIVITY OF RCu, BF₃ AND R₂CuLi, BF₃ TOWARDS ALLYLIC ACETALS AND ETHERS

A. Ghribi, A. Alexakis^{*}, J.F. Normant Laboratoire de Chimie des Organo-Eléments Tour 44, 4 place Jussieu 75230 PARIS Cédex 05 France

<u>Summary</u> : Organocopper and cuprate reagents associated with Lewis acids, are highly reactive towards allylic acetals and ethers. Displacements of the alkoxy group occurs by SN₂' attack according to the various parameters of the reaction.

The reactivity of α -ethylenic acetals with organometallic reagents was explored some years ago¹⁻⁵ and recently reinvestigated again⁶. These last developments prompt us to report our recent results in this field.

Aside deprotonation, such acetals may afford two products, by a direct displacement of an alkoxy group (pathway \underline{a}) or by an SN₂' displacement (pathway b)

Pathway <u>a</u> is selectively followed by titanium tetrachloride catalyzed aliphatic Grignard reagents³, whereas pathway <u>b</u> is exclusively prefered by organolithium reagents^{2,6} and copper catalyzed Grignard reagents^{4,5}. Our finding that acetals are rapidly cleaved by organocopper and cuprate reagents associated with strong Lewis acids(see preceding letter), prompted us to examine the case of α -ethylenic acetals. A systematic study of the various parameters :

- organocopper or organocuprate reagent

- nature of the main metal (Mg or Li)
- choice of solvent (Et₂0 or THF)

shows that all of these reagents are highly reactive towards acetals $(10-30 \text{min} \text{ at } -35^{\circ}\text{C})$. In most cases both SN_2 and SN_2' attacks (pathway <u>a</u> and <u>b</u>) are observed. Moreover the SN_2/SN_2' ratio is the same from the begining up to the end of the reaction, indicating that this ratio depends exclusively on the intrinsic nature of the organometallic reagent, of the acetal and of the solvent. The reaction temperature as well as the nature of the counterion (reagents prepared either from RMgX or RLi) do not modify

3080

significantly this ratio. Pathway <u>b</u> (SN_2') is exclusively followed, only in the case of the unhindered acrolein diethyl acetal, and only with RCu,BF₃ in Et₂O (entry 1 and 4). In THF solvent or with cuprate reagents R₂CuM,BF₃ (M=Li or MgX) a mixture of both SN₂ and SN₂' is obtained. Pure SN₂ attack cannot be attained. Interestingly the E/Z ratio of the obtained enol ether is completely reversed as compared with BuLi alone (entry 3).

Crotonaldehyde diethyl acetal shows the dramatic influence of a substituent in g' position. This time, pure SN₂' attack cannot be attained with any reagent (except BuLi alone, entry 9). On the other hand RCu,BF₃ in THF (entry 6) reacts exclusively by pathway <u>a</u> (SN₂ attack). Copper catalyzed Grignard reagents react sluggishly but cleanly by pathway <u>b</u> with this acetal⁴. Thus, the highly increased reactivity of these organo copper, BF₃ complexes is obtained at the expense of their selectivity.

Cinnamaldehyde diethyl acetal reacts in a strikingly different manner with RCu, BF_3 than with organolithium^{2,6} or Grignard reagents^{1,4} (with or without copper catalysis). With the organolithium reagents only addition to the double bond is observed (entry 13), whereas with the former reagent, pure SN_2 attack occurs (entry 12).

Finally a last example is offered by cyclohexenone ethylene glycol ketal. Organolithium reagents react by proton abstraction in the dioxolan ring⁶, and copper catalyzed Grignard reagents react only by pathway <u>b</u> $(SN_2^+)^5$. The same pathway is exclusively followed by R_2CuLi , BF_3 in Et_2O . Moreover, the increased reactivity of such cuprates allows the reaction of Me_2CuLi introducing the methyl group which could not be transferred previously⁴,⁵.

An alternative to acetals can be found in certain cases with acylates. These compounds are easily prepared from the corresponding aldehyde^{7,8} (and an acid anhydride). Although it has been reported that they react with R_2CuLi to afford a mixture of various products, we found that BuCu,LiX,BF₃ is an efficient reagent for a clean SN₂' attack.

 $\begin{array}{c} & & \\ & &$

The same reaction may also be performed in a simpler manner with $BuCu,MgX_2$ in THF without BF_3 (-15°, 10min) (83%, E/Z:45/55).

Crotonaldehyde acylate reacts also by pathway \underline{b}^{10} :

 $\bigvee_{0Ac}^{0Ac} + BuCu, MgX_2 \xrightarrow{THF} Bu \longrightarrow_{0Ac} 80\% (E/Z:45/55)$

Entry	Acetal	Copper reagent 2 eq.	Solvent	Product ^a (E/Z ratio)	Yield ^b
	OEt OEt			OEt + R	
1		BuCu,LiX,BF ₃ ^C	Et ₂ 0	R 0 100(15/85)	77%
2		" С	ТНЕ	26 74(12/88)	65%
3		BuLi d	Et ₂ 0	0 100(86/14)	80%
4		Bu Cu,LiX,BF3	п	0 100(15/85)	66%
	OEt OEt			$\bigvee_{R}^{OEt} + R^{OEt}$	
5		BuCu,LiX,BF3 ^{c,e}	Et ₂ 0	50 50(73/37)	90%
6		с "С	THF	100 0	87%
7		Bu ₂ CuLi,BF ₃	Et20	69 31(66/33)	67%
8		d Build		50 50(54/46)	69%
9			² 2 ⁰	0 100(80/20)	10%
10		Bú Cu,LiX,BF ₃	Et ₂ 0	31 69 -	60%
	Ph OEt OEt			$Ph \xrightarrow{Ph}_{R} 0Et + R \xrightarrow{Ph}_{R} 0Et$	
11		BuCu,LiX,BF3	Et ₂ 0	52 48(90/10)	91%
12			THF	100 0	90%
13		BuLi a	Et ₂ 0	Ph Bu Bu	60%
				$ \begin{array}{c} & & \\ $	
14		Et ₂ CuLi,BF ₃	Et ₂ 0		85%
15		Me ₂ CuLi,BF ₃	"		92%

Reactions of R"Cu", BF_3 with various \aleph -ethylenic acetals and ketals(-35°, 1h)

a. Ratio determined by G.C. and by ¹H NMR b. Yield of isolated products, by distillation. c. BuCu,MgX₂,BF₃ and Bu₂CuMgCl,BF₃ behave similarly d. Analogous results were obtained in Et₂O (ref.2) and in hexane (ref.6) e. The same reaction performed with c. The same reactly the same result

Lastly, preliminary studies shows that allylic ethers are able to react, contrary to a previous report dealing only with cinnamyl substrates⁹.

As was the case for acetals, RCu, BF_3 shows a preference for SN_2' attack, whereas R_2CuLi, BF_3 prefers pathway <u>a</u> (SN_2).

It appears that organocopper and cuprate reagents associated with Lewis acids are of increased reactivity towards allylic ethers, acetals and acylates. A better control of their regioselectivity may be attained by variing the Lewis acid and these studies are presently under way.

<u>Aknowledgements</u>: We thank the C.N.R.S. for financial support (ERA 825)

References :

- 1. R. Quelet, J. D'Angelo : Bull. Soc. Chim. France 1503 (1967)
- R. Quelet, C. Broquet, J. D'Angelo : Compt. Rend. Acad. Sci. <u>264</u>C 1316 (1967)
- 3. T. Mukaiyama, H. Ishikawa : Chem. Lett. 1077 (1974)
- J.F. Normant, A. Commerçon, M. Bourgain, J. Villieras : Tetrahedron Lett. 3833 (1975)
- 5. Y. Gendreau, J.F. Normant : Bull. Soc. Chim. France II 305 (1979)
- 6. C. Mioskowski, S. Manna, J.R. Falk : Tetrahedron Lett. 25 519 (1984)

7. a/ E. Knoevenagel Liebigs Ann. 402, 127 (1914)

- b/ Houben Weyl "Methoden der Organische Chemie" Georg Thieme Verlag 8 555 (1952)
- K.S. Kochhar, B.S. Bal, R.P. Deshpande, S.N. Rajadhyaksha, H.W. Pinnick J. Org. Chem. 48 1765 (1983)
- 9. Y. Yamamoto, S. Yamamoto, H. Yatagai, K. Maruyama, J. Amer. Chem. Soc. <u>102</u>, 2318 (1980)
- 10. We also found that RMgX, 2 HMPT gives a clean SN₂ type product :

nBuMgBr +
$$OAc$$
 THF
OAc $2 eq. HMPT$
+25°, 60min 79%

(Received in France 5 April 1984)